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Previous experimental studies on a modified cytochromec have shown that optical hole widths have a power-
law dependence on waiting time. We show that a phenomenological model, which assumes Gaussian random
frequency fluctuations whose two-point time-correlation function is a stretched exponential, is consistent
with the experimental data.

Optical spectroscopy has proven to be a useful technique for
probing the dynamics of proteins at low temperatures.1 In this
paper, we are concerned with recent optical hole burning
experiments on protoporphyrin IX-substituted cytochromec in
dimethylformamide/glycerol glass, performed by Fritsch et al.2

at 4 K. In these experiments, the optical transition of the
chromophore (protoporphyrin IX) is inhomogeneously broad-
ened and a narrow-band laser is used to selectively excite only
a small fraction of the chromophores (those on resonance with
the laser). Some of the excited molecules undergo a photo-
chemical reaction, and the photoproduct absorbs light in a
spectral region different from the chromophore. Therefore, when
the chromophore’s absorption line shape is subsequently
scanned, a dip or “hole” appears at the frequency of the burning
laser.

In a waiting time experiment, the width of the hole is
measured as a function of the waiting time,tw, between burning
and scanning. Typically, the hole width increases withtw as a
result of “spectral diffusion”. That is, the transition frequency
of an individual chromophore is not static in time, but rather
fluctuates due to changes in the chromophore’s local environ-
ment. As the ensemble of chromophores evolves in time, this
leads to a broadening of the hole. In particular, this experiment
measures the convolution of the initial hole shape with the
waiting-time-dependent “spectral diffusion kernel”. The latter
is the conditional probability density that a chromophore has a
transition frequencyν at time tw given that it had transition
frequencyν0 at time 0.

In the simplest scenario, both the initial hole and the (spectral
diffusion) kernel are Lorentzian functions of frequency, in which
case one can simply subtract the initial hole width from the
hole width attw to obtain the width of the kernel. And there is
at least one physical model that leads to a Lorentzian kernel:
when the chromophore is interacting in a dipolar manner with
a collection of point defects3 whose internal states change with
time. A particular realization of this picture, believed to be
appropriate for chromophores in glasses, takes the point defects
to be two-level systems (TLS) whose energy asymmetries and
tunneling matrix elements are widely distributed.4-7 In the usual
TLS model, it is known that the width of the kernel increases

logarithmically withtw, and indeed, thistw dependence has been
seen for many different chromophore/glass systems.6

The protein experiments, when analyzed by assuming a
Lorentzian kernel, show a power-law dependence of the width
of the kernel ontw, with an exponent of about 1/2,2 rather than
the logarithmic dependence predicted by the standard TLS
model. In addition, these experiments are independent of
equilibration or aging time2 (the time between cooling to
cryogenic temperatures and hole burning), in contrast to
predictions of the standard TLS model.8 Other more involved
thermal cycling hole burning experiments also provide evidence
that the standard TLS model does not apply to proteins.9 To
understand the protein experiments then, one approach is to
extend the standard TLS model to include TLS-TLS interac-
tions.2 Such a theoretical study was performed recently10 in order
to explain a similar power-law dependence of the kernel for
chromophores in glasses at extremely long times.11 Another
approach is to extend the TLS model by invoking a new set of
double well potentials, thought to be induced by the presence
of the chromophore.12

In this paper, we consider yet another approach,2 discarding
the TLS model for proteins altogether. Our model is completely
phenomenological; we simply assume that the chromophore’s
frequency fluctuations are described by a stationary Gaussian
random process and that the two-point time-correlation function
of the fluctuating frequency has a Kohlrausch (stretched
exponential) form. These assumptions do not seem unreasonable
for a complex interacting many-body system such as a protein.

To be specific, we take the chromophore’s transition fre-
quency to have zero mean,〈ν〉 ) 0, and a variance of〈ν2〉 )
σ2, so that (within the Gaussian assumption) the distribution of
transition frequencies (inhomogeneous line shape) is the Gauss-
ian function

The fwhm (inhomogeneous line width) of this distribution isΓ
) 2x2ln2σ. We further assume that the two-point time-
correlation function is given by〈ν(t)ν(0)〉 ≡ σ2C(t), with C(t)
) e-(t/τ)x. τ is the relaxation time for frequency fluctuations,
andx is the exponent characterizing the nonexponentiality of
the relaxation. Within the Gaussian assumption the kernel is13
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P(ν) ) 1

x2πσ2
exp{- ν2

2σ2} (1)
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whereσ(t)2 ) σ2[1 - C(t)2]. Thus, the kernel is a Gaussian
function of frequency whose waiting-time-dependent fwhm is
γ(tw) ) 2x2ln2σ(tw). It is precisely this width (within this
model) that is measured in the waiting time experiment. If, in
fact, tw is short compared toτ, then γ(tw) = xln2(tw/τ)x/2σ.
Writing σ in terms ofΓ (which can be determined experimen-
tally), we then have

To analyze the experimental2 hole widths within this model,
for eachtw we fit the hole shape to a convolution of the initial
(Lorentzian) hole shape with a Gaussian kernel. Examples of

these fits are shown in Figure 1 for three different waiting times.
As shown, the fits are excellent, as the convolutions are nearly
indistinguishable from the experimental data. This yields
γ(tw), which is shown in Figure 2 on a log-log plot for several
different values of the aging time. The experimental data can
be fit to eq 3 using two parameters,x andΓτ-x/2. The best fit,
shown in Figure 2, yields a value forx of 0.64. The inhomo-
geneous line width,Γ, for this system is 110 cm-1. With this,
we find that τ ) 5 ×1015 min. These numbers are not
unreasonable;x values for many complex systems range from
about 1/3 to 1, and the relaxation times for large-scale
rearrangements in low-temperature glasses must be extremely
longscertainly much longer than any reasonable experimental
time scale. Note that this very large value forτ is consistent
with our earlier assumption thattw , τ. Note also that although
eq 2 predicts a waiting-time-dependent frequency shift, fortw
, τ, this would not be observable, as is borne out experimen-
tally.

In summary, we have shown that a very simple phenomeno-
logical model, with apparently reasonable assumptions, is
consistent with the long-time spectral diffusion of a modified
cytochromec at low temperatures. It seems likely that the model
is also consistent with the extremely long-time spectral diffusion
observed for chromophores in glasses.11 Our model provides a
distinct alternative to models based on two-level systems. It will
be important to analyze experimental data at different temper-
atures. If the model remains consistent with experiment, it will
be interesting to try to understand the temperature dependence
of x and τ and indeed the origin of the model assumptions
themselves, from a more microscopic perspective.
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Figure 1. Experimental hole shapes for different waiting times together
with Voigtian (convolution of Lorentzian and Gaussian) fits.

Figure 2. Width of the spectral diffusion kernel,γ(tw), as a function
of waiting time,tw. The arrows indicate the waiting times for the holes
shown in Figure 1. The dotted line is the fit to eq 3.
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